

## 800G QSFP-DD Loopback Module (Straight-mapping)

## **Features**

- Industry's highest rated mating cycles for 2000 and above
- Built-in surge current mitigation technology
- Adjustable total power consumption up to 30W distributed to the 3 regions, each region is individually programmed between 1.0W through 10.0W with 0.5W increment
- ◆ Operating temperature: -40 °C to 85 °C
- ♦ +3.3V power supply
- Supports 8\* 10G/25G/56G PAM4/ 112G data rates
- 2-wire interface for integrated Digital Diagnostic Monitoring
- Signal integrity performance meets IEEE 802.3bj, 802.3cd, 802.3ck standards respectively
- Enhanced EMC/EMI design for noise harsh environment
- Enhanced heat dissipation technology for high power testing
- Custom EEPROM available
- A multi-color LED indicator for high/low power modes
- Hot-pluggable
- RoHS 2.0 compliant

## **Application**

- QSFP-DD port/system testing
- Ethernet IEEE 802.3 (Gigabit, 10 Gigabit and 25 Gigabit Ethernet)
- SONET, SDH, GBE, Fiber Channel Support

## **Standard**

- Common Management Interface Specification, Rev 4.0
- QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification, Rev 6.01
- ♦ IEEE Std 802.3cd
- ♦ IEEE Std 802.3ck Draft 3.0
- ♦ IEEE 802.3cd
- ♦ IEEE 802.3bj
- SFF-8024, SFF Cross Reference to Industry Products, Rev 4.7



"Because so much is in your optics"

## Straight-mapping

The 16 lanes are connected as following with match polarity:

- TX1 and RX1
- TX2 and RX2
- TX3 and RX3
- TX4 and RX4
- TX5 and RX5
- TX6 and RX6
- TX7 and RX7
- TX8 and RX8

## **Ordering Information**

| Part Number | Product Description                                                                      |
|-------------|------------------------------------------------------------------------------------------|
| POQD80LP-0  | QSFP-DD 2A 800G Loopback 0W ,Straight-mapping, BLUE Pull-<br>Tab,Compliance with CMIS    |
| POQD80LP-16 | QSFP-DD 2A 800G Loopback 16W ,Straight-mapping, PURPLE Pull-<br>Tab,Compliance with CMIS |
| POQD80LP-24 | QSFP-DD 2A 800G Loopback 24W ,Straight-mapping, ORANGE Pull-<br>Tab,Compliance with CMIS |
| POQD80LP-30 | QSFP-DD 2A 800G Loopback 30W ,Straight-mapping, GREEN Pull-<br>Tab,Compliance with CMIS  |



0-Watt

16-Watt



24-Watt



"Because so much is in your optics"

## **Description**

Designed and engineered to accommodate customers high usage 2000 cycles from -40°C to 85°C, the loopback module series are the most reliable products in the market to enable the quickest customers systems production and deployment. Software defined multiple power consumption may emulate the optical module power, and the embedded insertion loss characteristics emulates the real-world cabling for 100G/400G/800G Ethernet/Infiniband/FC. The built-in surge current mitigation technology mitigates the DUT risks from being damaged. The broad operating temperature range accommodates the enterprise, datacom and telecom applications. The loopback module may be used for ports testing, field deployment testing and equipment troubleshooting.

## **Specification**

| Absolute Maximum Ratings      |        |      |       |      |  |  |  |
|-------------------------------|--------|------|-------|------|--|--|--|
| Parameter                     | Symbol | Min  | Мах   | Unit |  |  |  |
| Storage Temperature           | Ts     | -40  | +85   | °C   |  |  |  |
| Ambient Operating Temperature | Та     | -40  | +85   | °C   |  |  |  |
| Storage Relative Humidity     | RHs    | 0    | 95    | %    |  |  |  |
| Operating Relative Humidity   | RHo    | 0    | 85    | %    |  |  |  |
| Power Supply Voltage          | Vcc    | 2.97 | +3.63 | V    |  |  |  |

| Recommended Operating Conditions |        |      |         |      |       |  |  |
|----------------------------------|--------|------|---------|------|-------|--|--|
| Parameter                        | Symbol | Min  | Typical | Max  | Unit  |  |  |
| Ambient Operating Temperature    | Та     | -40  | -       | +85  | °C    |  |  |
| Power Supply Voltage             | Vcc    | 2.97 | 3.3     | 3.63 | V     |  |  |
| Data Rate                        | BRate  | 0.1  | -       | 800  | Gbps  |  |  |
| Durability Cycles                |        | -    | 2000    | 2250 | Times |  |  |

| High Speed Characteristics            |          |             |    |     |     |                           |
|---------------------------------------|----------|-------------|----|-----|-----|---------------------------|
| ParameterSymbolMinTypicalMaxUnitNotes |          |             |    |     |     | Notes                     |
| Input/Output<br>Impedance             | Zd       | 90          | 95 | 105 | Ohm | Differential<br>Impedance |
| Return Loss                           | SDD11/22 | <-10<br><-5 |    |     | dB  |                           |

#### www.pro-optics.com

| Insertion Loss  | SDD21 | <br>7<br>(Include<br>Trace&Via&Mating<br>Connectors, Witho<br>MCB insertion loss | ut<br>5)<br>— dB | The insertion<br>loss for TX to<br>RX, including<br>the AC Caps,<br>as measured<br>with MCB,The<br>MCB insertion<br>loss comply<br>with IEEE<br>802.3ck CL<br>162B.1.2.1 |
|-----------------|-------|----------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intra Pair Skew | IPS   | 100                                                                              | ps               |                                                                                                                                                                          |

## **Pin Definition**



#### Bottom PCB viewed from bottom



# pro-optics

"Because so much is in your optics"

| Pad | Logic      | Symbol       | Description                         | Plug<br>Sequence <sup>4</sup> | Notes |
|-----|------------|--------------|-------------------------------------|-------------------------------|-------|
| 1   |            | GND          | Ground                              | 1B                            | 1     |
| 2   | CML-I      | Tx2n         | Transmitter Inverted Data Input     | 3B                            |       |
| 3   | CML-I      | Tx2p         | Transmitter Non-Inverted Data Input | 3B                            |       |
| 4   |            | GND          | Ground                              | 1B                            | 1     |
| 5   | CML-I      | Tx4n         | Transmitter Inverted Data Input     | 3B                            |       |
| 6   | CML-I      | Tx4p         | Transmitter Non-Inverted Data Input | 3B                            | 0     |
| 7   |            | GND          | Ground                              | 1B                            | 1     |
| 8   | LVTTL-I    | ModSelL      | Module Select                       | 3B                            |       |
| 9   | LVTTL-I    | ResetL       | Module Reset                        | 3B                            | 1     |
| 10  |            | VccRx        | +3.3V Power Supply Receiver         | 2B                            | 2     |
| 11  | LVCMOS-I/O | SCL          | TWI serial interface clock          | 3B                            |       |
| 12  | LVCMOS-I/O | SDA          | TWI serial interface data           | 3B                            |       |
| 13  |            | GND          | Ground                              | 1B                            | 1     |
| 14  | CML-O      | Rx3p         | Receiver Non-Inverted Data Output   | 3B                            | 1     |
| 15  | CML-O      | Rx3n         | Receiver Inverted Data Output       | 3B                            | 1     |
| 16  |            | GND          | Ground                              | 1B                            | 1     |
| 17  | CML-O      | Rx1p         | Receiver Non-Inverted Data Output   | 3B                            | 1     |
| 18  | CML-O      | Rx1n         | Receiver Inverted Data Output       | 3B                            |       |
| 19  |            | GND          | Ground                              | 1B                            | 1     |
| 20  |            | GND          | Ground                              | 1B                            | 1     |
| 21  | CML-O      | Rx2n         | Receiver Inverted Data Output       | 3B                            | -     |
| 22  | CML-O      | Rx2p         | Receiver Non-Inverted Data Output   | 3B                            | 1     |
| 23  | -          | GND          | Ground                              | 1B                            | 1     |
| 24  | CML-O      | Rx4n         | Receiver Inverted Data Output       | 3B                            | 2     |
| 25  | CML-O      | Rx4p         | Receiver Non-Inverted Data Output   | 3B                            | 0     |
| 26  |            | GND          | Ground                              | 1B                            | 1     |
| 27  | LVTTL-0    | ModPrsL      | Module Present                      | 3B                            | 5     |
| 28  | LVTTL-0    | IntL/RxLOS   | Interrupt/optional RxLOS            | 3B                            |       |
| 29  |            | VccTx        | +3.3V Power supply transmitter      | 2B                            | 2     |
| 30  |            | Vcc1         | +3.3V Power supply                  | 2B                            | 2     |
| 31  | LVTTL-I    | LPMode/TxDis | Low Power mode/optional TX Disable  | 3B                            |       |
| 32  |            | GND          | Ground                              | 1B                            | 1     |
| 33  | CML-I      | Тх3р         | Transmitter Non-Inverted Data Input | 3B                            |       |
| 34  | CML-I      | Tx3n         | Transmitter Inverted Data Input     | 3B                            |       |
| 35  |            | GND          | Ground                              | 1B                            | 1     |
| 36  | CML-I      | Tx1p         | Transmitter Non-Inverted Data Input | 3B                            | 1     |
| 37  | CML-I      | Tx1n         | Transmitter Inverted Data Input     | 3B                            |       |
| 38  |            | GND          | Ground                              | 1B                            | 1     |
| 39  |            | GND          | Ground                              | 1A                            | 1     |
| 40  | CML-I      | Tx6n         | Transmitter Inverted Data Input     | 3A                            |       |
| 41  | CML-I      | Тх6р         | Transmitter Non-Inverted Data Input | 3A                            | 1     |
| 42  |            | GND          | Ground                              | 1A                            | 1     |
| 43  | CML-I      | Tx8n         | Transmitter Inverted Data Input     | 3A                            |       |
| 44  | CML-I      | Тх8р         | Transmitter Non-Inverted Data Input | 3A                            | 13    |
| 45  |            | GND          | Ground                              | 1A                            | 1     |

#### Table 1- Pad Function Definition

# pro-optics

"Because so much is in your optics"

| Pad                                                     | Logic                                                                                                                            | Symbol                                                                                                          | Description                                                                                                                                                                                                                                                                                                                        | Plug<br>Sequence <sup>4</sup>                                                   | Notes                                 |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|
| 46                                                      | LVCMOS/CML-I                                                                                                                     | P/VS4                                                                                                           | Programmable/Module Vendor Specific 4                                                                                                                                                                                                                                                                                              | 3A                                                                              | 5                                     |
| 47                                                      | LVCMOS/CML-I                                                                                                                     | P/VS1                                                                                                           | Programmable/Module Vendor Specific 1                                                                                                                                                                                                                                                                                              | 3A                                                                              | 5                                     |
| 48                                                      |                                                                                                                                  | VccRx1                                                                                                          | 3.3V Power Supply                                                                                                                                                                                                                                                                                                                  | 2A                                                                              | 2                                     |
| 49                                                      | LVCMOS/CML-O                                                                                                                     | P/VS2                                                                                                           | Programmable/Module Vendor Specific 2                                                                                                                                                                                                                                                                                              | 3A                                                                              | 5                                     |
| 50                                                      | LVCMOS/CML-O                                                                                                                     | P/VS3                                                                                                           | Programmable/Module Vendor Specific 3                                                                                                                                                                                                                                                                                              | 3A                                                                              | 5                                     |
| 51                                                      |                                                                                                                                  | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 52                                                      | CML-O                                                                                                                            | Rx7p                                                                                                            | Receiver Non-Inverted Data Output                                                                                                                                                                                                                                                                                                  | 3A                                                                              | -                                     |
| 53                                                      | CML-O                                                                                                                            | Rx7n                                                                                                            | Receiver Inverted Data Output                                                                                                                                                                                                                                                                                                      | 3A                                                                              |                                       |
| 54                                                      |                                                                                                                                  | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 55                                                      | CML-O                                                                                                                            | Rx5p                                                                                                            | Receiver Non-Inverted Data Output                                                                                                                                                                                                                                                                                                  | 3A                                                                              |                                       |
| 56                                                      | CML-O                                                                                                                            | Rx5n                                                                                                            | Receiver Inverted Data Output                                                                                                                                                                                                                                                                                                      | 3A                                                                              |                                       |
| 57                                                      |                                                                                                                                  | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 58                                                      |                                                                                                                                  | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 59                                                      | CML-O                                                                                                                            | Rx6n                                                                                                            | Receiver Inverted Data Output                                                                                                                                                                                                                                                                                                      | 3A                                                                              |                                       |
| 60                                                      | CML-O                                                                                                                            | Rx6p                                                                                                            | Receiver Non-Inverted Data Output                                                                                                                                                                                                                                                                                                  | 3A                                                                              |                                       |
| 61                                                      |                                                                                                                                  | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 62                                                      | CML-O                                                                                                                            | Rx8n                                                                                                            | Receiver Inverted Data Output                                                                                                                                                                                                                                                                                                      | 3A                                                                              | -                                     |
| 63                                                      | CML-O                                                                                                                            | Rx8p                                                                                                            | Receiver Non-Inverted Data Output                                                                                                                                                                                                                                                                                                  | 3A                                                                              |                                       |
| 64                                                      |                                                                                                                                  | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 65                                                      |                                                                                                                                  | NC                                                                                                              | No Connect                                                                                                                                                                                                                                                                                                                         | 3A                                                                              | 3                                     |
| 66                                                      |                                                                                                                                  | Reserved                                                                                                        | For future use                                                                                                                                                                                                                                                                                                                     | 3A                                                                              | 3                                     |
| 67                                                      |                                                                                                                                  | VccTx1                                                                                                          | 3.3V Power Supply                                                                                                                                                                                                                                                                                                                  | 2A                                                                              | 2                                     |
| 68                                                      |                                                                                                                                  | Vcc2                                                                                                            | 3.3V Power Supply                                                                                                                                                                                                                                                                                                                  | 2A                                                                              | 2                                     |
| 69                                                      | LVCMOS-I                                                                                                                         | ePPS/Clock                                                                                                      | 1PPS PTP clock or reference clock input                                                                                                                                                                                                                                                                                            | 3A                                                                              | 6                                     |
| 70                                                      | cromoo i                                                                                                                         | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 71                                                      | CML-I                                                                                                                            | Tx7p                                                                                                            | Transmitter Non-Inverted Data Input                                                                                                                                                                                                                                                                                                | 3A                                                                              | -                                     |
| 72                                                      | CML-I                                                                                                                            | Tx7n                                                                                                            | Transmitter Inverted Data Input                                                                                                                                                                                                                                                                                                    | 3A                                                                              | -                                     |
| 73                                                      | OME                                                                                                                              | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| 74                                                      | CML-I                                                                                                                            | Tx5p                                                                                                            | Transmitter Non-Inverted Data Input                                                                                                                                                                                                                                                                                                | 3A                                                                              | <u> </u>                              |
| 75                                                      | CML-I                                                                                                                            | Tx5n                                                                                                            | Transmitter Inverted Data Input                                                                                                                                                                                                                                                                                                    | 3A                                                                              | <u> </u>                              |
| 76                                                      | OME                                                                                                                              | GND                                                                                                             | Ground                                                                                                                                                                                                                                                                                                                             | 1A                                                                              | 1                                     |
| DD m<br>the ho<br>mA.<br>Note :<br>for the<br>different | odule and all module v<br>ost board signal-comm<br>2: VccRx, VccRx1, Vcc<br>e host side of the Host<br>ential loading of input v | voltages are refe<br>on ground plane<br>c1, Vcc2, VccTx<br>Card Edge Com<br>voltage pads mus                    | ND) for all signals and supply (power). All are com<br>renced to this potential unless otherwise noted. Co<br>. Each connector Gnd contact is rated for a stead<br>and VccTx1 shall be applied concurrently. Supply<br>nector are listed in Table 13. For power classes 4<br>st not result in exceeding contact current limits. Ea | onnect these dire<br>ly state current o<br>/ requirements do<br>and above the r | ectly to<br>f 500<br>efined<br>nodule |
|                                                         | ct is rated for a steady                                                                                                         |                                                                                                                 | 1500 mA.<br>erminated with 10 kΩ to ground on the host. Pad                                                                                                                                                                                                                                                                        | 65 (No Connect)                                                                 | Shall                                 |
|                                                         |                                                                                                                                  |                                                                                                                 | nally pad 65 may get terminated with 10 k $\Omega$ to gro                                                                                                                                                                                                                                                                          |                                                                                 | Shall                                 |
|                                                         |                                                                                                                                  |                                                                                                                 | sequence of the host connector and module. The                                                                                                                                                                                                                                                                                     |                                                                                 | 2A 3A                                 |
| 1B, 21<br>DD pa                                         | B, 3B. (See Figure 2<br>ads. Sequence 1A and                                                                                     | for pad locations<br>1B will then occ                                                                           | <ul> <li>Contact sequence A will make, then break conta<br/>ur simultaneously, followed by 2A and 2B, followed</li> </ul>                                                                                                                                                                                                          | ect with additional d by 3A and 3B.                                             |                                       |
| progra<br>with 1                                        | ammable/vendor speci<br>0 kΩ. For host design                                                                                    | fic inputs P/VS1<br>s using program                                                                             | currently under development. For module designs<br>and P/VS4 signals it is recommended each to be<br>mable/vendor specific outputs P/VS2 and P/VS3 s                                                                                                                                                                               | terminated in the                                                               | e modu                                |
| in the second second second                             | nmended each to be te<br>6: for host not impleme                                                                                 | the second se | host with 10 kΩ.<br>ck, it is not necessary to parallel terminate the ePF                                                                                                                                                                                                                                                          | S/Clock signal to                                                               | o groun                               |
| NULTER I                                                |                                                                                                                                  |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                    |                                                                                 | - uruur                               |

## **Typical application Circuit**

The 16 lanes are connected as following with match polarity:

- TX1 and RX1
- TX2 and RX2
- TX3 and RX3
- TX4 and RX4
- TX5 and RX5
- TX6 and RX6
- TX7 and RX7
- TX8 and RX8



## **Status LED**

A multi-color LED must be viewed from the front of the module in order to signify high/low power modes, as well as interrupts .Low-power mode is defined as device address A0h.00.200.6:4 = 000b or The LPMode is High.

- Solid green: low-power mode
- Solid red: high-power mode
- Blinking green: low-power mode with any of the interrupt flag is set
- Blinking red: high-power mode with any of the interrupt flag is set

#### **I2C interface**

Upon the completion of the MgmtInit state, the I2C interface on the module must support Fast-mode as defined in section 4.5.1 of the QSFP-DD/QSFP-DD800/QSFP112 Hardware Specification, Rev 6.01 in order to handle the SCL clock frequency between 0kHz and 400KHz. In addition, the module may only clock stretching the SCL less than 100  $\mu$ sec in any frequency.

#### **NVRAM**

A 128-byte NVRAM be accessed through I2C:

The NVRAM be located at page 0x03 address 128 through address 255.

The NVRAM support Current Address Read Operation, Random Read Operation, Sequential Bytes Read Operation, Byte Write Operation6 and Sequential Bytes Write Operation.

The NVRAM support Fast-mode as defined in section 4.5.1 of the QSFPDD/QSFP-DD800/QSFP112 Hardware Specification, Rev 6.01.

The default value in the NVRAM is 00h for the entire 128 bytes

## **QSFP-DD** Identification:

| Page | Address  | Size | Name                                           | Description                     |
|------|----------|------|------------------------------------------------|---------------------------------|
|      | 0 1      |      | Identifier                                     | 18h: Identifier Type of QSFP-DD |
|      | 3        | 1    | Module state                                   | b0000_011x: ModuleReady state.  |
|      | 85       | 1    | Module Type Encodings                          | 0x03: Passive Cu                |
| N/A  | N/A 86 1 | 1    | ApSelCode 1: Host Electrical<br>Interface Code | 0x49: 800GBASE-CR8              |
|      | 87       | 1    | ApSelCode 1: Module Media<br>Interface Code    | 0xBF: Passive Loopback Module   |
| 00h  | 128      | 1    | Identifier                                     | 18h: Identifier Type of QSFP-DD |

#### Table 1: loopback ID registers

|  | 129-144 | 16 | Vendor name              | Vendor name (ASCII)                  |
|--|---------|----|--------------------------|--------------------------------------|
|  | 148-163 | 16 | Vendor PN                | Part number (ASCII)                  |
|  | 164-165 | 2  | Vendor rev               | Revision (ASCII)                     |
|  | 166-181 | 16 | Vendor SN                | Vendor Serial Number (ASCII)         |
|  |         |    |                          | bxxxx_01xx: 30-Watt loopback         |
|  |         |    |                          | bxxxx_101x: 24-Watt loopback         |
|  | 200     | 1  | Maximum Power identifier | bxxxx_00xx: 16-Watt loopback         |
|  |         |    |                          | bxxxx_11xx: 0-Watt loopback          |
|  |         |    |                          | Refer to address 201                 |
|  |         |    |                          | 0x78 (30W/0.25W = 120)               |
|  |         |    |                          | 0x60 (24W/0.25W = 96)                |
|  | 201     | 1  | Max Power                | 0x40 (16W/0.25W = 64)                |
|  |         |    |                          | 0x00 :(0W,Without Power burner. Only |
|  |         |    |                          | EEPROM)                              |

Table 2: QSFP-DD loopback non-ID registers:

| Page | Address   | Size      | Name                               | Description       |
|------|-----------|-----------|------------------------------------|-------------------|
|      | 12-15     | 4         | Temperature DOM                    | Refer to Table 3  |
|      | 16-19,    | 6         | Voltago DOM                        | Refer to Table 4  |
| N/A  | 22-23     | 0         | Voltage DOM                        |                   |
|      | 26        | 1         | Self-reset                         | Refer to Table 5  |
| 006  | 200       | bit 6-4   | Power burner control               | Refer to Table 6  |
| 00h  | 214-216 3 |           | Power burner setting               | Refer to Table 6  |
| 03h  | 128-255   | 128       | NVRAM                              |                   |
|      | 225       | bit 6,2-1 | Low-Speed Signal Status            | Refer to Table 7  |
| FFh  | 225       | bit 7,5-4 | Low-Speed Signal state transaction | Refer to Table 8  |
|      | 250-251   | 2         | Power-cycle counter                | Refer to Table 11 |
|      | 252-253   | 2         | Contact pads insertion cycle       | Refer to Table 12 |

## **Case temperature monitor**

The Case temperatures is monitored on the top of the case.

| Table | Table 5. temperature DOM |      |                              |                                            |  |  |  |  |
|-------|--------------------------|------|------------------------------|--------------------------------------------|--|--|--|--|
| Page  | Address                  | Size | Name                         | Description                                |  |  |  |  |
|       | 12                       | 1    | Reserved / Temperature 2 MSB | Internally measured temperature, top case: |  |  |  |  |
| N/A   | 13                       | 1    | Custom / Temperature 2 LSB   | signed 2's complement in 1/256°C           |  |  |  |  |
|       | 13                       |      |                              | increments                                 |  |  |  |  |

#### Table 3: temperature DOM

|      | 14<br>15 | 1    | Module Monitor 1:<br>Temperature 1 MSB<br>Module Monitor 1:<br>Temperature 1 LSB | Internally measured temperature, top case:<br>signed 2's complement in 1/256°C<br>increments |                                           |
|------|----------|------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|
| Page | Address  | Bits | Name                                                                             | Description                                                                                  |                                           |
|      |          | 3    | TempMonLowWamingFlag                                                             | Latched Flag for low temperature warning                                                     |                                           |
|      | N/A 9    | •    | 2                                                                                | TempMonHighWarningFlag                                                                       | Latched Flag for high temperature warning |
|      |          | 1    | TempMonLowAlarmFlag                                                              | Latched Flag for low temperature alarm                                                       |                                           |
|      |          | 0    | TempMonHighAlarmFlag                                                             | Latched Flag for high temperature alarm                                                      |                                           |

## Power rail voltage monitor

The 3 VCC power rails, VccRx\*, VccTx\* and Vcc\* are monitored individually.

| Page | Address | Size | Name                                     | Description                                                                     |  |
|------|---------|------|------------------------------------------|---------------------------------------------------------------------------------|--|
|      | 16      | 1    | Module Monitor 2:<br>Supply 3.3-volt MSB | Internally measured 3.3 volt input                                              |  |
|      | 17      | 1    | Module Monitor 2:<br>Supply 3.3-volt LSB | supply voltage VccRx* gold-fingers: in<br>100µV increments                      |  |
|      | 18      | 1    | Module Monitor 3:<br>Supply 3.3-volt MSB | Internally measured 3.3 volt input                                              |  |
| N/A  | 19      | 1    | Module Monitor 3:<br>Supply 3.3-volt LSB | <ul> <li>supply voltage VccTx* gold-fingers: in<br/>100µV increments</li> </ul> |  |
|      | 22      | 1    | Module Monitor 5:<br>TEC current MSB     | Internally measured 3.3 volt input<br>supply voltage Vcc* gold-fingers: in      |  |
|      | 23      | 1    | Module Monitor 5:<br>TEC current MSB     | 100µV increments                                                                |  |
| Page | Address | Bits | Name                                     | Description                                                                     |  |
|      |         | 7    | VccRx MonLowWarningFlag                  | Latched Flag for low supply VccRx voltage warning                               |  |
|      |         | 6    | VccRx MonHighWarningFlag                 | Latched Flag for high supply VccRx voltage warning                              |  |
| N1/A | 9       | 5    | VccRx MonLowAlarmFlag                    | Latched Flag for low supply VccRx voltage alarm                                 |  |
| N/A  |         | 4    | VccRx MonHighAlarmFlag                   | Latched Flag for high supply VccRx voltage alarm                                |  |
|      | 10      | 3    | VccTx MonLowWarningFlag                  | Latched Flag for low supply VccTx voltage warning                               |  |
|      | 10      | 2    | VccTx MonHighWarningFlag                 | Latched Flag for high supply VccTx voltage warning                              |  |
|      |         |      |                                          | 8 8                                                                             |  |

|  |    | 1 | VccTx MonLowAlarmFlag  | Latched Flag for low supply VccTx voltage alarm   |
|--|----|---|------------------------|---------------------------------------------------|
|  |    | 0 | VccTx MonHighAlarmFlag | Latched Flag for high supply VccTx voltage alarm  |
|  |    | 3 | Vcc MonLowWarningFlag  | Latched Flag for low supply Vcc voltage warning   |
|  |    | 2 | Vcc MonHighWarningFlag | Latched Flag for high supply Vcc voltage warning  |
|  | 11 | 1 | Vcc MonLowAlarmFlag    | Latched Flag for low supply Vcc voltage alarm     |
|  |    | 0 | Vcc MonHighAlarmFlag   | Latched Flag for high supply Vcc<br>voltage alarm |

### **Reset requirement**

There are 3 different type of reset in the module, power-up-reset, hard-reset and soft-reset. All the 3 resets should cause the module to consume default power: less than 1.5W.

#### Power-up-reset

The power-up-reset should cause all the active components, including the microcontroller, in the module reset to default state and then start the normal operation. It should also reset the power burner in the module to consume the default power.

#### Hard-reset(ResetL)

The hard-reset should cause the microcontroller to reset, and then reset all the other active components and reset the power burner to consume the default power. Afterward, the microcontroller will start the normal operation.

#### Soft-reset

The soft-reset should cause the microcontroller to reset, and then reset all the other active components and reset the power burner to consume the default power. Afterward, the microcontroller will start the normal operation. The soft-reset is set by host through the I2C register 26 bit 3.

#### Table 5: Soft-reset register

| Page | Address | Bits | Name           | Description    | Туре           |
|------|---------|------|----------------|----------------|----------------|
| N/A  | 26      | 3    | Software Reset | Software reset | RW, Self-Clear |

## Programmable power consumption/burner

During power-up of the module, the default power consumption in the module should burn less than 0.5W to boot up the MCU and associated control logic/circuitry as default. Afterward, host can set the module to consume higher power by programming the 3 burners in 3 regions through I2C registers 200, 214-216 when the LPMode is Low.

| Page | Address | Bits | Name                     | Description                         | Туре |
|------|---------|------|--------------------------|-------------------------------------|------|
|      |         | 7    | Reserved                 | Ob                                  | RO   |
|      |         | 6    | Region 3 burner          | The burner in each region is        |      |
|      |         | 5    | Region 2 burner          | individually enabled by these bits. | RW   |
|      |         | 4    | Region 1 burner          | 0b: Disable (default)               |      |
|      |         | 4    |                          | 1b: Enable                          |      |
|      | 200     |      |                          | bxxxx_01xx: 30-Watt loopback        |      |
|      |         |      |                          | bxxxx_101x: 24-Watt loopback        |      |
|      |         | 3-0  | Maximum Power identifier | bxxxx_00xx: 16-Watt loopback        | RO   |
|      |         | 3-0  |                          | bxxxx_11xx: 0-Watt loopback         |      |
|      |         |      |                          | Refer to address 201                |      |
|      |         |      |                          | (or Customizable power)             |      |
|      | 213     | 7-0  | Reserved                 | 00ь                                 | RO   |
|      | 214     | 7-0  | Region 3                 | The power in each region is         | RW   |
|      |         |      | power consumption        | individually programmed between     |      |
|      | 215     | 7-0  | Region 2                 | 1.0W through 10.0W                  | RW   |
| 00h  |         |      | power consumption        | 10h: 1.0W (default)                 |      |
|      |         |      |                          | 18h:1.5W 20h: 2.0W                  |      |
|      |         |      |                          | 28h: 2.5W 30h: 3.0W                 |      |
|      |         |      |                          | 38h: 3.5W 40h: 4.0W                 |      |
|      |         |      |                          | 48h: 4.5W 50h: 5.0W                 |      |
|      |         |      |                          | 58h: 5.5W 60h: 6.0W                 |      |
|      |         |      |                          | 68h: 6.5W 70h: 7.0W                 |      |
|      |         |      |                          | 78h: 7.5W 80h: 8.0W                 |      |
|      | 010     | 7.0  | Region 1                 | 88h: 8.5W 90h: 9.0W                 |      |
|      | 216     | 7-0  | power consumption        | 98h: 9.5W A0h: 10.0W                | RW   |
|      |         |      |                          | Else: remain the current value.     |      |
|      |         |      |                          | The tolerance of power              |      |
|      |         |      |                          | consumption must                    |      |
|      |         |      |                          | meet the following criteria :       |      |
|      |         |      |                          | +/-5% @ VCC = 3.3V +/-2%            |      |
|      |         |      |                          | +/-11% @ VCC = 3.3V +/-5%           |      |
|      |         |      |                          | +/-20% @ VCC = 3.3v +/-10%          |      |

| Table 6: | power | burner | registers |
|----------|-------|--------|-----------|
|----------|-------|--------|-----------|

## **Power distribution**

The power burner is placed on the top side of paddle PCB with all the heat be dissipated at the top of the case. The power burner is separated into 3 regions as shown:

Each region can be individually enabled by register 200 and programmed the amount of power consumption by corresponding registers between 214 and 216.

- The sub-region x.1 should dissipate 75% of the power from the corresponding region
- The sub-region x.2 should dissipate 25% of the power from the corresponding region.
- Each region will be driven by a single power rails as defined below:
  - Region 1: VccTx\*,
  - Region 2: VccRx\*,
  - Region 3: Vcc\*



Table 7: Low-Speed Signal status registers

| Page    | Address | Size    | Name                                                        | Description                                                 | Туре |
|---------|---------|---------|-------------------------------------------------------------|-------------------------------------------------------------|------|
| FFh 225 |         |         | ePPS signal                                                 | 0b: logical 0, V <sub>ePPS</sub> < V <sub>il</sub> (max)    | RO   |
|         |         | 6       | status                                                      | 1b: logical 1, V <sub>ePPS</sub> > V <sub>ih</sub> (min)    |      |
|         |         | ModSelL | 0b: logical 0, V <sub>ModSelL</sub> < V <sub>il</sub> (max) | RO                                                          |      |
|         | 225     | 2       | signal status                                               | 1b: logical 1, V <sub>ModSelL</sub> > V <sub>ih</sub> (min) |      |
|         |         | 1       | LPMode                                                      | 0b: logical 0, V <sub>LPMode</sub> < V <sub>il</sub> (max)  | RO   |
|         |         |         | signal status                                               | 1b: logical 1, V <sub>LPMode</sub> > V <sub>ih</sub> (min)  |      |

| Page | Address | Size | Name       | Description                                      | Туре |
|------|---------|------|------------|--------------------------------------------------|------|
|      |         |      |            | Read 0b: No edge detected                        | RW   |
|      |         | 7    | ePPS       | Read 1b: Either rising or falling edges detected |      |
|      |         | 7    | transition | Write 0b: No effect                              |      |
|      |         |      |            | Write 1b: Clear the register                     |      |
|      |         |      |            | Read 0b: No edge detected                        | RW   |
| FFh  | 225     | E    | ModSelL    | Read 1b: Either rising or falling edges detected |      |
|      | 225     | 5    | transition | Write 0b: No effect                              |      |
|      |         |      |            | Write 1b: Clear the register                     |      |
|      |         |      |            | Read 0b: No edge detected                        | RW   |
|      |         |      | LPMode     | Read 1b: Either rising or falling edges detected |      |
|      |         | 4    | transition | Write 0b: No effect                              |      |
|      |         |      |            | Write 1b: Clear the register                     |      |

#### \_Table 8: Low-Speed Signal state transaction registers

#### ModSelL

The ModSelL is Low, the module responds to TWI serial communication commands.

The ModSelL is High, the module shall not respond to or acknowledge any TWI interface communication.

#### LPMode

The LPMode is Low, the power burner in the module to consume the setting power.

The LPMode is High, the module enter low power mode.

#### ModPrsL

The ModPrsL is pulled towards ground in the module.

#### IntL

The IntL signal is asserted Low with any of Alarm and Warning flag is set and deasserted High after all of Alarm and Warning flags are read.

#### Table 9: Alarm and Warning Thresholds(Page 02H Byte 128~143)

| Page | Address | Size | Name of field            | Description                                                                                             |
|------|---------|------|--------------------------|---------------------------------------------------------------------------------------------------------|
|      | 128-129 | 2    | Temp High Alarm          | MSB at low address, 95 $^\circ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$  |
|      | 130-131 | 2    | Temp Low Alarm           | MSB at low address, -10 $^\circ \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| 02h  | 132-133 | 2    | Temp High Warning        | MSB at low address, 85 $^\circ\!\!\!\mathrm{C}$                                                         |
|      | 134-135 | 2    | Temp Low Warning         | MSB at low address, -5 $^\circ C$                                                                       |
|      | 136-137 | 2    | VCC Voltage High Alarm   | MSB at low address, 3.6V                                                                                |
|      | 138-139 | 2    | VCC Voltage Low Alarm    | MSB at low address, 3.0V                                                                                |
|      | 140-141 | 2    | VCC Voltage High Warning | MSB at low address, 3.5V                                                                                |
|      | 142-143 | 2    | VCC Voltage Low Warning  | MSB at low address, 3.1V                                                                                |

PS: Alarm and Warning Thresholds can be customized according to customer requirements

#### **Power-cycle counter**

Every time the MCU in the module is powered-up, the power-cycle counter will be implemented. The default value of the counter is 00\_00h. The value of the counter must be saved in I2C registers in Page FFh.

#### Table 10: Power-cycle counter registers

| Page | Address | Size | Name                     | Description                     | Туре |
|------|---------|------|--------------------------|---------------------------------|------|
|      | 250     | 1    | Power-cycle counter, MSB | Power-cycle counter.            | RO   |
| FFh  | 251     | 1    | Power-cycle counter, LSB | Default to 00_00h from factory. | RO   |

### Contact pads insertion requirement and module reliability

The contacts pads on the paddle card is maintain the lane insertion loss specified at the end of the 2000th physical insertion.

The module is without any cold-solder and breakdown of active components, such as microcontroller and burners at the end of the 2000th temperature cycle.

The value of guaranteed maximum insertion/temperature cycle saved in I2C registers in Page FFh, Address 252-253:

 Table 11: Contact pads insertion cycle registers

| Page | Address | Size | Name                                                      | Description                                               | Туре |
|------|---------|------|-----------------------------------------------------------|-----------------------------------------------------------|------|
|      | 252     | 1    | Guaranteed maximum<br>insertion/temperature<br>cycle, MSB | Guaranteed maximum<br>insertion/temperature cycle in hex. | RO   |
| FFh  | 253     | 1    | Guaranteed maximum<br>insertion/temperature<br>cycle, LSB | The goal is 2000 (07D0h)<br>insertions.                   | RO   |

## Package Outline

Dimensions are in millimeters. (Unit: mm

