POOS80SR8	Pro-optics 800G OSFP112 SR8 transceiver, dual MPO-12 APC
	interface, 850nm, up to 100m with OM4, Top-open-fin, Pull
	tab

Key Features

The transceiver complies with common management interface specification (CMIS). The supported key features listed below allow host software to read and control the transceiver status through I2C.

- Adaptive Tx input equalization
- Programmable Rx output amplitude
- Programmable Rx output pre-cursor
- Programmable Rx output post-cursor
- Supply voltage monitoring (DDM_Voltage)
- Transceiver case temperature monitoring (DDM_Temperature)
- Tx transmit optical power monitoring for each lane (DDM_TxPower)
- Tx bias current monitoring for each lane (DDM_TxBias)
- Rx receive optical power monitoring for each lane (DDM_RxPower)
- Warning and alarm indication for each DDM function
- Tx & Rx LOL and LOS indication
- Tx fault indication
- Host and line side loopback capabilities
- Host and line side PRBS generator and checker capabilities
- CDB firmware upgrade capability
- Versatile diagnostics monitoring (VDM) capability (optional, additional power consumption increase)
- Other functions defined in CMIS

Applications

The transceiver is designed for Ethernet, Telecom and Infiniband use cases. The application advertisements listed below allow host software to select proper application following CMIS definition

- Application case 1, 8x100G SR, 8 of 100G per channel breakout connections.
- Application case 2, 2x400G SR4, 2 of 400G per port breakout connections.
- Application case 3, 2x200G SR4, 2 of 200G per port breakout connections.

- Application case 4, 1x800G SR8, 1 of 800G per port point to point connection.
- Application case 5, 2x100G SR4, 2 of 100G per port breakout connections.
- Applications for backward compliance, refer to detailed

application list below

Mixed applications of case 1 and case 2 are also supported.

Introduction

This product is an 800Gb/s Octal Small Form-factor Pluggable (OSFP) optical module with top open fin designed for 100m with OM4 fiber optical communication applications. The module converts 8 channels of 100Gb/s (PAM4) electrical input data to 8 channels of parallel optical signals, each capable of 100Gb/s operation for an aggregate data rate of 800Gb/s. Reversely, on the receiver side, the module converts 8 channels of parallel optical signals of 100Gb/s each channel for an aggregate data rate of 800Gb/s into 8 channels of 100Gb/s (PAM4) electrical output data.

Dual MPO-12 connector can be plugged into the OSFP112 SR8 module receptacle for two sides with 4 channels each. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through an OSFP MSA-compliant edge type connector.

I2C interface is supported to read and control the status of this product.

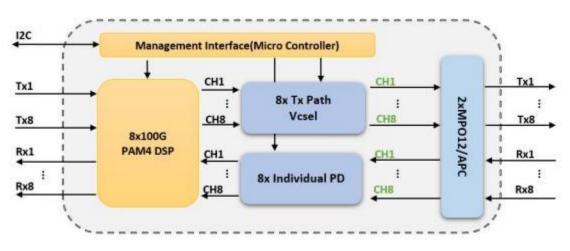



Figure 1 shows the transceiver block diagram

- OSFP form factor hot pluggable
- CMIS compliance
- 8 parallel lanes of 100G-PAM4 electrical and optical parallel lanes
- Dual optical port of MPO-12/APC
- Top open fin

- Up to 100m reach on multi-mode fiber OM4 and 50m on OM3 with FEC
- 14 Watts max
- Case temperature range of 0°C to 70°C

Table 1 shows CMIS application advertisements list : Table 1. CMIS Application advertisements

ApSel	Host Electrical	Module Media	Host and Media	Host Lane
Code	Interface	Interface	Lane Count	Assignment
ApSel 1	50 (400GAUI-4-L C2M)	11 (400GBASE-SR4)	44 (4:4)	11 (lanes 1,5)
ApSel 2	32 (IB NDR)	11 (400GBASE-SR4)	44 (4:4)	11 (lanes 1,5)
ApSel 3	F (200GAUI-4 C2M)	E (200GBASE-SR4)	44 (4:4)	11 (lanes 1,5)
ApSel 4	31 (IB HDR)	E (200GBASE-SR4)	44 (4:4)	11 (lanes 1,5)
ApSel 5	4C (100GAUI- 1-L C2M)	D (100GBASE-SR)	11 (1:1)	FF (lanes 1,2,3,4,5,6,7,8)
ApSel 6	52 (800GAUI-8-L C2M)	12 (800G-SR8)	88 (8:8)	01 (lane 1)
ApSel 7	4F (400GAUI-4-S C2M)	11 (400GBASE-SR4)	44 (4:4)	11 (lanes 1,5)
ApSel 8	4B (100GAUI- 1-S C2M)	D (100GBASE-SR)	11 (1:1)	FF (lanes 1,2,3,4,5,6,7,8)
ApSel 9	51 (800GAUI-8-S C2M)	12 (800G-SR8)	88 (8:8)	01 (lane 1)
ApSel 10	42 (CAUI-4 C2M with RS FEC)	9 (100GBASE-SR4)	44 (4:4)	11 (lanes 1,5)
ApSel 11	30 (IB EDR)	9 (100GBASE-SR4)	44 (4:4)	11 (lanes 1,5)

Pin Map and Description

The electrical interface of OSFP module consist of a 60 contacts edge connector as illustrated by the diagram in Figure 2, which defined in Clause 8.1 of OSFP MSA Specification.

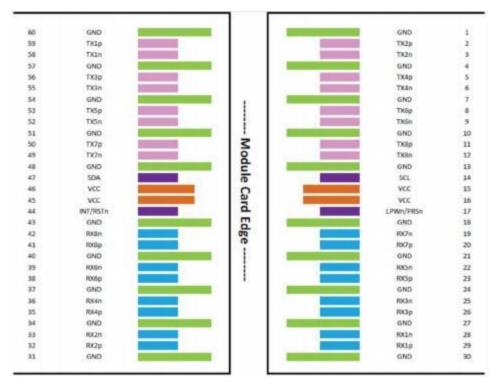


Figure 2. MSA Compliant Connector

Table 2 OSFP connector pin list

Pin#	Symbol	Description	Logic	Direction	Plug Sequence
1	GND		Ground		1
2	TX2p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
3	TX2 n	Transmitter Data Inverted	CML-I	Input from Host	3
4	GND		Ground		1
5	TX4p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
6	TX4n	Transmitter Data Inverted	CML-I	Input from Host	3
7	GND		Ground		1
8	TX6p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
9	TX6n	Transmitter Data Inverted	CML-I	Input from Host	3
10	GND		Ground		1
11	TX8p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
12	TX8n	Transmitter Data Inverted	CML-I	Input from Host	3
13	GND		Ground		1
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	Bi- directional	3
15	VCC	+3.3V Power		Power from Host	2
16	VCC	+3.3V Power		Power from Host	2
17	LPWn/PRS n	Low-Power Mode / Module Present	Multi-Level	Bi- directional	3
18	GND		Ground		1
19	RX7n	Receiver Data Inverted	CML-O	Output to Host	3
20	RX7p	Receiver Data Non-Inverted	CML-O	Output to Host	3
21	GND		Ground		1
22	RX5n	Receiver Data Inverted	CML-O	Output to Host	3
23	RX5p	Receiver Data Non-Inverted	CML-O	Output to Host	3
24	GND		Ground		1
25	RX3n	Receiver Data Inverted	CML-O	Output to Host	3
26	RX3p	Receiver Data Non-Inverted	CML-O	Output to Host	3
27	GND		Ground		1
28	RX1n	Receiver Data Inverted	CML-O	Output to Host	3
29	RX1p	Receiver Data Non-Inverted	CML-O	Output to Host	3
30	GND		Ground		1
31	GND		Ground		1
32	RX2p	Receiver Data Non-Inverted	CML-O	Output to Host	3
33	RX2n	Receiver Data Inverted	CML-O	Output to Host	3
34	GND		Ground		1
35	RX4p	Receiver Data Non-Inverted	CML-O	Output to Host	3
36	RX4n	Receiver Data Inverted	CML-O	Output to Host	3
37	GND		Ground		1
38	RX6p	Receiver Data Non-Inverted	CML-O	Output to Host	3
39	RX6n	Receiver Data Inverted	CML-O	Output to Host	3
40	GND		Ground		1
41	RX8p	Receiver Data Non-Inverted	CML-O	Output to Host	3
42	RX8n	Receiver Data Inverted	CML-O	Output to Host	3
43	GND		Ground		1
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level	Bi- directional	3
45	VCC	+3.3V Power		Power from Host	2

I

46	VCC	+3.3V Power		Power from Host	2
47	SDA	2-wire Serial interface data	LVCMOS-I/O	Bi- directional	3
48	GND		Ground		1
49	TX7 n	Transmitter Data Inverted	CML-I	Input from Host	3
50	TX7 p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
51	GND		Ground		1
52	TX5 n	Transmitter Data Inverted	CML-I	Input from Host	3
53	TX5p	Transmitter Data Non-Inverted	CML-I	Input from Host	3
54	GND		Ground		1
55	TX3 n	Transmitter Data Inverted	CML-1	Input from Host	3
56	TX3p	Transmitter Data Non-Inverted	CML-1	Input from Host	3
57	GND		Ground		1
58	TX1 n	Transmitter Data Inverted	CML-I	Input from Host	3
59	TX1 p	Transmitter Data Non-Inverted	CML-1	Input from Host	3
60	GND		Ground		1

Table 3 shows the detailed control pins

Direction Description Name 2-wire serial clock signal. Requires pull-up BiDir resistor to 3.3V on host SCL 2-wire serial data signal. Requi res pull-up BiDir SDA resistor to 3.3V on host. Dual Function Signal . Low Power mode is an active-low input signal . Module Present is controlled by a pull-down LPWn/PRSn Input/Output resistor on the module which gets converted to an active-low output logic signal Voltage zones is shown as figure3. Dual Funtion Signal . Reset is an active-low input signal INT/RSTn Input/Output . Interrupt is an active-high output signal Voltage zones is shown as figure 3.

Table 3. OSFP Control pins

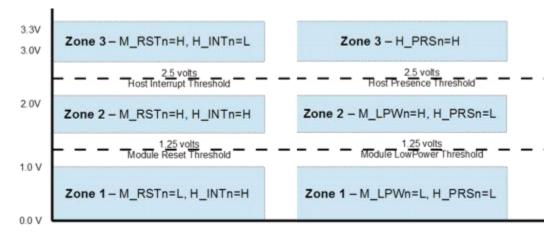


Figure 3. Voltage Zones

Figure 4 shows the recommended power supply filter design

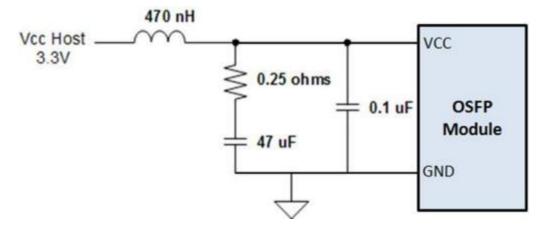
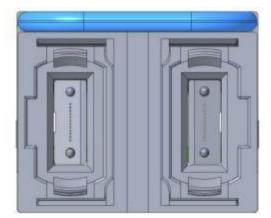



Figure 4. Recommended Power Supply Filter

Optical Port Description

The optical interface port is dual MPO-12 APC receptacle. The transmit and receive optical lanes shall occupy the positions depicted in Figure 5 when looking into the MDI receptacle with the connector keyway feature on top.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	Тор	0	70	degC	
Power Supply Voltage	Vcc	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	

Recommended O perating Conditions

Parameter	Symbol	Min	Typical	Max	Units	Notes
Operating Case Temperature	T _{OP}	0		70	degC	
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Data Rate, each Lane			53.125		GBd	PAM4
Data Rate Accuracy		-100		100	ppm	
Pre-FEC Bit Error Ratio				2.4x10 ⁻⁴		
Post-FEC Bit Error Ratio				1x10 ^{- 15}		1
Link Distance (OM4)	D1	2		100	m	
Link Distance (OM3)	D2	2		50	m	2

Notes:

1. FEC provided by host system.

2. FEC required on host system to support maximum distance.

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Test Point	Min	Typical	Max	Units	Notes
Power Consumption				14	W	
Supply Current	lcc			4.24	А	
	Modul	le Input (each	Lane)			
Signaling Rate, each Lane	TP1	53.	125 ± 100 p	pm	GBd	
DC Common-mode input Voltage	TP1	-0.35		2.85	V	
Single-ended input Voltage	TP1a	-0.4		3.3	V	
AC common-mode voltage tolerance Low-frequency, VCM _{LF} Full-band, VCM _{LF}	TP1a	32 80			mV	
Module stressed input tolerance	TP1a	IEEE 802	2.3ck D3.3 1	20G.3.4.3		
Differential Peak-to-Peak input Voltage tolerance	TP1a	750			mV	
Differential to common- mode return loss, RLcd	TP1	IEEE 802.3ck D3.3 Equation 120G -2			dB	
Effective return loss, ERL	TP1	8.5			dΒ	
Differential termination mismatch	TP1			10	%	

Module Output (each Lane)						
Signaling Rate, each lane	TP4	53.	125 ± 100 p	pm	GBd	
Peak-to-peak AC						
common- mode voltage	TD 4					
Low-frequency, VCMLF	TP4			32	mV	
Full-band, VCMLF				80		
Differential peak-to-peak						
output voltage	TD 4					
Short mode	TP4			600	mV	
Long mode				845		
Eye height	TP4	15			mV	
Vertical eye closure, VEC	TP4			12	dB	
Common- mode to differential return loss, RLdc	TP4	IEEE 802.3ck Equation 120G-1			dB	
Effective return loss, ERL	TP4	8.5			dB	
Differential termination mismatch	TP4			10	%	
Transition time	TP4	8.5			ps	
DC common-mode voltage tolerance	TP4	-0.35		2.85	v	

Optical Characteristics

Parameter	Symbol	Min	Typical	Max	Units	Notes	
Transmitter							
Data Rate, each Lane		53.125	± 100 ppr	n	GBd		
Modulation Format		P/	AM4				
Center Wavelength	λς	844	850	863	nm		
RMA spectral width				0.6	nm		
Average Launch Power, each	Pavg	-4.6		4	dBm	1	
Lane							
Outer Optical							
Modulation Amplitude							
(OMA _{outer}), each							
Lane	Рома	-2.6		3.5	dBm		
For max(TECQ,TDECQ)≤							
1.8d B		-4.4+					
For		max(TECQ,TDE					
1.8 <max(tecq,tdecq)≤< td=""><td></td><td>CQ)</td><td></td><td></td><td></td><td></td></max(tecq,tdecq)≤<>		CQ)					
4.4d B							
Transmitter and							
Dispersion Eye Closure	TDECQ			4.4	dB		
for PAM4							
(TDECQ), each Lane							

	1					
Transmitter eye closure for PAM4, each lane	TECQ			4.4	dB	
Overshoot/ undershoot				29	%	
Transmitter power excursion				2.3	dBm	
Extinction Ratio	ER	2.5			dB	
Transmitter Transition Time				17	ps	
Average launch power of OFF transmitter	T _{off}			-30	d _{Bm}	
RIN14OMA	RIN			-132	d B/Hz	
Optical Return Loss Tolerance	TOL			14	dΒ	
Encircled flux			6 at 19 un 6 at 4.5 ur		dB	2
		Receiver				
Data Rate, each Lane		53.125	± 100 pp	m	GBd	
Modulation Format		P/	AM4			
Center wavelength	λς	842	850	948	nm	
Damage Threshold, each Lane	TH₫	5			dBm	3
Average Receive Power, each		-6.4		4	d _{Bm}	4
Lane						
Receive Power (OMA _{outer}), each Lane				3.5	dBm	
Receiver Sensitivity (OMA _{outer}), each Lane	SEN			max (- 4.6,TECQ- 6.4)	dBm	5
Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS			-2.0	dBm	6
Receiver Reflectance	R _R			-15	dB	
LOS Assert	LOSA	-15		-8.6	dBm	
LOS De-assert	LOSD			-6.6	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Cond	tions of S	stress Receiver Sen	sitivity T	est (Note 7)		
Stressed Eye Closure for PAM4 (SECQ), Lane under Test			4.4		dB	
OMA _{outer} of each aggressor lane			3.5		dB	

Notes:

- Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. If measured into type A1a.2 or type A1a.3, or A1a.4, 50 μm fiber, in accordance with IEC 61280- 1-4.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 5. Measured with conformance test signal at TP3 for the BER equal to $2.4x10^{-4}$.
- 6. These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver .

Digital Diagnostic Specifications

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_ Ibias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

 Due to measurement accuracy of different single mode fibers, there could be an additional +/- 1 d B fluctuation, or a +/- 3 d B total accuracy.

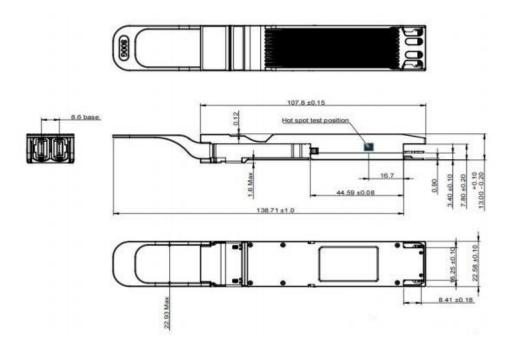


Figure 6. Mechanical Outline